Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-580

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
2.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229953

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
3.
J Physiol Biochem ; 80(1): 235-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112970

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus-induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7-12 m/min, 30-40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome-associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic-lysosome system, the ubiquitin-proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin-proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Camundongos , Animais , Metformina/uso terapêutico , Metformina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Autofagia , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
4.
J Physiol Sci ; 73(1): 32, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990150

RESUMO

This study was designed to probe the effect of chaperone-assisted selective autophagy (CASA) on the maintenance of proteostasis during exhaustive exercise and uncover the alteration of CASA in muscle fibers with pre-high-intensity interval training (HIIT) intervention-induced muscle adaptation in response to exhaustive exercise. Rats were randomly divided into a control group; an exhaustive exercise group; and an HIIT + exhaustive exercise group. Results show myofibril damage and BiP levels were increased after exhaustive exercise, and the levels of the HSP70, BAG3, ubiquitin, autophagy-related proteins, and their interactions were increased. HIIT intervention before exhaustive exercise could decrease myofibril injury and BiP levels, accompanied by down-regulation of HSP70/BAG3 complex and selective autophagy. In conclusion, exhaustive exercise promotes CASA to clear protein aggregation for keeping proteostasis in muscle fibers; pre-HIIT intervention improves myofibril injury and unfold protein response caused by exhaustive exercise, which might contribute to inhibit the augmentation of CASA.


Assuntos
Treinamento Intervalado de Alta Intensidade , Ratos , Animais , Autofagia/fisiologia , Músculo Esquelético/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
5.
Entropy (Basel) ; 25(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628215

RESUMO

Outlier detection is an important task in the field of data mining and a highly active area of research in machine learning. In industrial automation, datasets are often high-dimensional, meaning an effort to study all dimensions directly leads to data sparsity, thus causing outliers to be masked by noise effects in high-dimensional spaces. The "curse of dimensionality" phenomenon renders many conventional outlier detection methods ineffective. This paper proposes a new outlier detection algorithm called EOEH (Ensemble Outlier Detection Method Based on Information Entropy-Weighted Subspaces for High-Dimensional Data). First, random secondary subsampling is performed on the data, and detectors are run on various small-scale sub-samples to provide diverse detection results. Results are then aggregated to reduce the global variance and enhance the robustness of the algorithm. Subsequently, information entropy is utilized to construct a dimension-space weighting method that can discern the influential factors within different dimensional spaces. This method generates weighted subspaces and dimensions for data objects, reducing the impact of noise created by high-dimensional data and improving high-dimensional data detection performance. Finally, this study offers a design for a new high-precision local outlier factor (HPLOF) detector that amplifies the differentiation between normal and outlier data, thereby improving the detection performance of the algorithm. The feasibility of this algorithm is validated through experiments that used both simulated and UCI datasets. In comparison to popular outlier detection algorithms, our algorithm demonstrates a superior detection performance and runtime efficiency. Compared with the current popular, common algorithms, the EOEH algorithm improves the detection performance by 6% on average. In terms of running time for high-dimensional data, EOEH is 20% faster than the current popular algorithms.

6.
Sensors (Basel) ; 23(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299919

RESUMO

The distribution of wireless network systems challenges the communication security of Internet of Things (IoT), and the IPv6 protocol is gradually becoming the main communication protocol under the IoT. The Neighbor Discovery Protocol (NDP), as the base protocol of IPv6, includes address resolution, DAD, route redirection and other functions. The NDP protocol faces many attacks, such as DDoS attacks, MITM attacks, etc. In this paper, we focus on the communication-addressing problem between nodes in the Internet of Things (IoT). We propose a Petri-Net-based NS flooding attack model for the flooding attack problem of address resolution protocols under the NDP protocol. Through a fine-grained analysis of the Petri Net model and attacking techniques, we propose another Petri-Net-based defense model under the SDN architecture, achieving security for communications. We further simulate the normal communication between nodes in the EVE-NG simulation environment. We implement a DDoS attack on the communication protocol by an attacker who obtains the attack data through the THC-IPv6 tool. In this paper, the SVM algorithm, random forest algorithm (RF) and Bayesian algorithm (NBC) are used to process the attack data. The NBC algorithm is proven to exhibit high accuracy in classifying and identifying data through experiments. Further, the abnormal data are discarded through the abnormal data processing rules issued by the controller in the SDN architecture, to ensure the security of communications between nodes.


Assuntos
Internet das Coisas , Algoritmos , Teorema de Bayes , Comunicação , Internet , Tecnologia sem Fio , Segurança Computacional
7.
Biomed Pharmacother ; 157: 114080, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481406

RESUMO

Persistent hyperglycemia increases inflammation response, promoting the development of myocardial fibrosis. Based on our previous research that exercise and metformin alone or their combination intervention could attenuate myocardial fibrosis in db/db mice, this study aimed to further explore the underlying mechanisms by which these interventions attenuate myocardial fibrosis in early diabetic cardiomyopathy. Forty BKS db/db mice were randomly divided into four groups. Diabetic db/db mice without intervention were in the C group. Aerobic exercise (7-12 m/min, 30-40 min/day, 5 days/week) was performed in the E group. Metformin (300 mg·kg-1·day-1) was administered in the M group. Exercise combined with metformin was performed in the EM group. Ten wild-type mice were in the WT group. All interventions were administered for 8 weeks. Results showed that the expression levels of α-SMA, Collagen I, and Collagen III were increased in 16-week-old db/db mice, which were reversed by exercise and metformin alone or their combination intervention. All interventions attenuated the level of TGF-ß1/Smad2/3 pathway-related proteins and reduced the expression of inflammatory signaling pathway-regulated proteins TNF-α, p-IκBα/IκBα, and p-NF-κB p65/NF-κB p65 in db/db mice. Furthermore, metformin intervention inhibited HNF4α expression via AMPK activation, whereas exercise intervention increased the expression of IL-6 instead of activating AMPK. In conclusion, exercise and metformin alone or their combination intervention inhibited the TGF-ß1/Smad pathway to attenuate myocardial fibrosis by reducing NF-κB-mediated inflammatory response. The anti-fibrotic effects were regulated by metformin-activated AMPK or exercise-induced elevation of IL-6, whereas their combination intervention showed no synergistic effects.


Assuntos
Cardiomiopatias Diabéticas , Metformina , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Interleucina-6 , Fibrose
8.
Oxid Med Cell Longev ; 2022: 2297268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120597

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM) commonly coexist and act synergistically to drive adverse clinical outcomes. This study is aimed at investigating the effects of exercise intervention and oral hypoglycaemic drug of metformin (MET) alone or combined on hepatic lipid accumulation. To investigate if oxidative stress and endoplasmic reticulum stress (ERS) are involved in lipotoxicity-induced hepatocyte apoptosis in diabetic mice and whether exercise and/or MET alleviated oxidative stress or ERS-apoptosis by AMPK-Nrf2-HO-1 signaling pathway. Methods: Forty db/db mice with diabetes (random blood glucose ≥ 250 mg/dL) were randomly allocated into four groups: control (CON), exercise training alone (EX), metformin treatment alone (MET), and exercise combined with metformin (EM) groups. Hematoxylin-eosin and oil red O staining were carried out to observe hepatic lipid accumulation. Immunohistochemical and TUNEL methods were used to detect the protein expression of the binding immunoglobulin protein (BiP) and superoxide dismutase-1 (SOD1) and the apoptosis level of hepatocytes. ERS-related gene expression and the AMPK-Nrf2-HO-1 signaling pathway were tested by western blotting. Results: Our data showed that db/db mice exhibited increased liver lipid accumulation, which induced oxidative and ER stress of the PERK-eIF2α-ATF4 pathway, and hepatocyte apoptosis. MET combined with exercise training significantly alleviated hepatic lipid accumulation by suppressing BiP expression, the central regulator of ER homeostasis, and its downstream PERK-eIF2α-ATF4 pathway, as well as upregulated the AMPK-Nrf2-HO-1 signaling pathway. Moreover, the combination of exercise and MET displayed protective effects on hepatocyte apoptosis by downregulating Bax expression and TUNEL-positive staining, restoring the balance of cleaved-caspase-3 and caspase-3, and improving the antioxidant defense system to prevent oxidative damage in db/db mice. Conclusion: Compared to MET or exercise intervention alone, the combined exercise and metformin exhibited significant effect on ameliorating hepatic steatosis, inhibiting oxidative and ER stress-induced hepatocyte apoptosis via improving the capacity of the antioxidant defense system and suppression of the PERK-eIF2α-ATF4 pathway. Furthermore, upregulation of AMPK-Nrf2-HO-1 signaling pathway might be a key crosstalk between MET and exercise, which may have additive effects on alleviating hepatic lipid accumulation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Glicemia , Caspase 3/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estresse do Retículo Endoplasmático , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Lipídeos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214301

RESUMO

The detection and defense of malicious attacks are critical to the proper functioning of network security. Due to the diversity and rapid updates of the attack methods used by attackers, traditional defense mechanisms have been challenged. In this context, a more effective method to predict vulnerabilities in network systems is considered an urgent need to protect network security. In this paper, we propose a formal modeling and analysis approach based on Petri net vulnerability exploitation. We used the Common Vulnerabilities and Exposures (CVE)-2021-3711 vulnerability source code to build a model. A patch model was built to address the problems of this model. Finally, the time injected by the actual attacker and the time simulated by the software were calculated separately. The results showed that the simulation time was shorter than the actual attack time, and ultra-real-time simulation could be achieved. By modeling the network system with this method, the model can be found to arrive at an illegitimate state according to the structure of Petri nets themselves and thus discover unknown vulnerabilities. This method provides a reference method for exploring unknown vulnerabilities.


Assuntos
Software , Simulação por Computador
10.
Biochem Biophys Res Commun ; 584: 80-86, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34775284

RESUMO

The aim of the study was to explore different effects of exercise, metformin alone, or exercise combined with metformin on cardiovascular morphological and functional changes in early stage of type 2 diabetes mellitus. Eight-week-old diabetic db/db mice and BKS mice were recruited and exposed to three different treatments (exercise, metformin alone, or their combination) for 8 weeks. Metformin was administered intragastrically, and aerobic exercise was performed using treadmill with 7-12 m/min, 30-40 min/day, 5 days/week. In the combination group, aerobic exercise was carried out for 30 min after intragastric administration of metformin. The results showed that all three treatments improved cardiac fibrosis and aortic lipid deposition. Exercise intervention failed to alleviate myocardial hypertrophy, but it improved the declined heart rate and diastolic blood pressure in diabetic db/db mice. In contrast, metformin caused opposite effects in these mice. The combination of exercise and metformin had additive effects on glucose intolerance and insulin sensitivity rather than on the improvement of myocardial and aortic structure. In conclusion, metformin improved changes in the morphology and structure of the heart and aorta, while exercise alone or in combination with metformin demonstrated more advantages in cardiac functional reserve through the physiological hypertrophy of myocardium in diabetic db/db mice.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/terapia , Terapia por Exercício/métodos , Metformina/farmacologia , Condicionamento Físico Animal/fisiologia , Resultado do Tratamento , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Terapia Combinada , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Intolerância à Glucose/fisiopatologia , Intolerância à Glucose/terapia , Hipoglicemiantes/farmacologia , Resistência à Insulina , Masculino , Camundongos , Fatores de Tempo
11.
Zookeys ; 944: 147-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684778

RESUMO

Larvae of Chalcophora japonica chinensis Schaufuss, 1879 were collected from within dead trunks in Hubei Province, China, in February 2019. These specimens created an opportunity to provide the first description of the larval stage of this subspecies; The larva is described and illustrated based on morphological characters and DNA barcoding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...